Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Leukoc Biol ; 110(4): 693-710, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33404106

RESUMO

The inflammatory and anti-inflammatory Mϕs have been implicated in many diseases including rheumatoid arthritis, multiple sclerosis, and leprosy. Recent studies suggest targeting Mϕ function and activation may represent a potential target to treat these diseases. Herein, we investigated the effect of second mitochondria-derived activator of caspases (SMAC) mimetics (SMs), the inhibitors of apoptosis (IAPs) proteins, on the killing of human pro- and anti-inflammatory Mϕ subsets. We have shown previously that human monocytes are highly susceptible whereas differentiated Mϕs (M0) are highly resistant to the cytocidal abilities of SMs. To determine whether human Mϕ subsets are resistant to the cytotoxic effects of SMs, we show that M1 Mϕs are highly susceptible to SM-induced cell death whereas M2a, M2b, and M2c differentiated subsets are resistant, with M2c being the most resistant. SM-induced cell death in M1 Mϕs was mediated by apoptosis as well as necroptosis, activated both extrinsic and intrinsic pathways of apoptosis, and was attributed to the IFN-γ-mediated differentiation. In contrast, M2c and M0 Mϕs experienced cell death through necroptosis following simultaneous blockage of the IAPs and the caspase pathways. Overall, the results suggest that survival of human Mϕs is critically linked to the activation of the IAPs pathways. Moreover, agents blocking the cellular IAP1/2 and/or caspases can be exploited therapeutically to address inflammation-related diseases.


Assuntos
Apoptose , Inibidores de Caspase/farmacologia , Polaridade Celular , Macrófagos/citologia , Oligopeptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Janus Quinases/metabolismo , Cinética , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Necroptose/efeitos dos fármacos , Fenótipo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
J Ethnopharmacol ; 211: 295-310, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28962889

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora cordifolia is a miraculous ayurvedic herb used in the treatment of innumerable diseases such as diabetes, gonorrhea, secondary syphilis, anaemia, rheumatoid arthritis, dermatological diseases, cancer, gout, jaundice, asthma, leprosy, in the treatment of bone fractures, liver & intestinal disorders, purifies the blood, gives new life to the whole body; (rejuvenating herb) and many more. Recent studies have revealed the anticancer potential of this plant but not much work has been done on the anticancer chemical constituents actually responsible for its amazing anticancer effects. This prompted us to investigate this plant further for new potent anticancer molecules. AIM OF THE STUDY: The present study was designed to isolate and identify new promising anticancer candidates from the aqueous alcoholic extract of T. cordifolia using bioassay-guided fractionation. MATERIALS AND METHODS: The structures of the isolated compounds were determined on the basis of spectroscopic data interpretation and that of new potent anticancer molecule, TC-2 was confirmed by a single-crystal X-ray crystallographic analysis of its corresponding acetate. The in vitro anti-cancer activity of TC-2 was evaluated by SRB assay and the autophagic activity was investigated by immunofluorescence microscopy. Annexin-V FITC and PI dual staining was applied for the detection of apoptosis. The studies on Mitochondrial Membrane potential and ROS (Reactive oxygen species) production were also done. RESULTS: Bioassay guided fractionation and purification of the aqueous alcoholic stem extract of Tinospora cordifolia led to the isolation of a new clerodane furano diterpene glycoside (TC-2) along with five known compounds i.e. cordifolioside A (ß-D-Glucopyranoside,4-(3-hydroxy-1-propenyl)- 2,6-dimethoxyphenyl 3-O-D-apio-ß-D-furanosyl) (TC-1), ß-Sitosterol(TC-3), 2ß,3ß:15,16-Diepoxy- 4α, 6ß-dihydroxy-13(16),14-clerodadiene-17,12:18,1-diolide (TC-4), ecdysterone(TC-5) and tinosporoside(TC-6). TC-2 emerged as a potential candidate for the treatment of colon cancer. CONCLUSION: The overall study on the bioassay guided isolation of T.cordifolia identified and isolated a new clerodane furano diterpenoid that exhibited anticancer activity via induction of mitochondria mediated apoptosis and autophagy in HCT116 cells. We have reported a promising future candidate for treating colon cancer.


Assuntos
Diterpenos Clerodânicos/farmacologia , Glicosídeos/farmacologia , Tinospora , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Células HCT116 , Humanos , Caules de Planta
4.
Artigo em Inglês | MEDLINE | ID: mdl-24177606

RESUMO

Vitiligo is a common pigmentary disorder caused by the destruction of functional melanocytes. Vitamin D is an essential hormone synthesized in the skin and is responsible for skin pigmentation. Low levels of vitamin D have been observed in vitiligo patients and in patients with other autoimmune diseases. Therefore, the relationship between vitamin D and vitiligo needs to be investigated more thoroughly. We reviewed the literature to date regarding the role of vitamin D in skin pigmentation. Our review revealed that vitamin D deficiency has been identified in many conditions, including premature and dysmature birth, pigmented skin, obesity, advanced age, and malabsorption. Vitamin D increases melanogenesis and the tyrosinase content of cultured human melanocytes by its antiapoptotic effect. However, a few growth-inhibitory effects on melanocytes were also reported. Vitamin D regulates calcium and bone metabolism, controls cell proliferation and differentiation, and exerts immunoregulatory activities. Vitamin D exerts its effect via a nuclear hormone receptor for vitamin D. The topical application of vitamin D increased the number of L-3,4-dihydroxyphenylalanine-positive melanocytes. The topical application of vitamin D yields significant results when used in combination with phototherapy and ultraviolet exposure to treat vitiligo in humans. Vitamin D decreases the expression of various cytokines that cause vitiligo. In conclusion, application of vitamin D might help in preventing destruction of melanocytes thus causing vitiligo and other autoimmune disorders. The association between low vitamin D levels and the occurrence of vitiligo and other forms of autoimmunity is to be further evaluated.


Assuntos
Melanócitos/metabolismo , Pigmentação da Pele/fisiologia , Deficiência de Vitamina D/sangue , Vitamina D/sangue , Vitiligo/sangue , Animais , Humanos , Pigmentação da Pele/efeitos dos fármacos , Vitamina D/administração & dosagem , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/tratamento farmacológico , Vitiligo/diagnóstico
9.
In. International Leprosy Congress, 12. International Leprosy Congress, 12/Proceedings. New Delhi, s.n, 1984. p.591-595.
Não convencional em Inglês | LILACS-Express | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLACERVO, SES-SP | ID: biblio-1246459
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA